

Microdialysis as a Longitudinal, In Vivo Assessment of Achilles Tendon Healing in a Rat Model

Joseph B. Newton, Snehal S. Shetye, Courtney A. Nuss, Matthew M. Counihan, Daniel C. Farber, Louis J. Soslowsky McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA

Introduction

- The Achilles tendon is the most frequently ruptured tendon, leading to significant pain, loss of function, and healthcare costs [1].
- In vivo assessment of healing after an Achilles tendon rupture can provide valuable metrics not only to monitor healing, but also to guide treatment options [2,3].
- However, in vivo assays such as ultrasound imaging, passive joint mobility assessments, and functional gait analysis, do not provide insight into the biologic changes in the healing tendon [4-6].

Results

- Lactate (Fig.3A) and pyruvate (Fig.3B) concentrations significantly increased 7 days postinjury, with no changes in lactate:pyruvate ratio at any time points (Fig.3C).
- Glucose concentration significantly increased 7 days post-injury (Fig.3D).
- Glutamate concentration significantly increased 21 days post-injury (Fig.3E). \bullet
- PINP concentrations significantly decreased at each post-injury time point compared to pre-injury measures (Fig.3F).

A Lactate Concentration

B Pyruvate Concentration Lactate/Pyruvate

ELISA

bar

Fiaure

- While microdialysis has been used to assess tendon healing in humans, it has not been used in an animal model of Achilles tendon injury [7,8].
- **Objective:** to develop and pilot a novel use of microdialysis in vivo to directly measure key biologic markers of tendon healing and matrix deposition in the rat Achilles tendon.
- Hypothesis: following Achilles injury, metabolite and procollagen concentrations would significantly increase indicating higher metabolic activity and collagen synthesis, respectively.

Study Design

- After facility acclimation, 4-month male Sprague Dawley rats (n=6) underwent unilateral blunt transection of the right Achilles tendon without repair (IACUC approved).
- The right hind limb was immobilized for 7 days. Microdialysis (Fig.1) measurements were taken before injury and 7, 14, and 21 days post-injury.
- **Dialysate Collection and Analysis**
- Under isofluorane anesthesia and ultrasound guidance (Fig.2), a microdialysis catheter (CMA 71; CMA Microdialysis AB; 100kDa molecular cutoff, 0.5mm outer diameter; 4mm in length) was introduced from the proximal aspect of the tendon towards the calcaneus.

- The active part of the membrane was Outlet Tube placed in the rupture site and a perfusion fluid of artificial CSF with 3% 500kDa dextran (Sigma Aldrich) was used.
- The fluid was pumped through the inner tube of the catheter into the space between the inner tube and the semipermeable catheter membrane, where the exchange between the interstitial and perfusion fluid takes place.
- The resultant dialysate solution was transmitted from the catheter Microanalysis AV).
- With a perfusion speed of 1.0 μ L/min, samples were collected for 2.5 hours. Due to fluid pump adjustment during the first few minutes, trauma from the probe insertion, and to remain conservative, the first 30 minutes of dialysate was

and Figure 1. Representative image of microdialysis probe and exchange across the semipermeable membrane. Note larger particles (red) are collected in a 1.5mL vial (Microvial, CMA unable to perfuse across membrane, while smaller particles (green and blue) are able to freely cross.

- Results indicate an early increase in overall metabolic activity and simultaneous decrease in collagen I production following Achilles injury.
- Increases in lactate and pyruvate 7 days post-injury indicate increased anaerobic and aerobic metabolic activity, respectively, as the resident cell population begins tissue repair. No changes in the lactate:pyruvate ratio demonstrate that the local environment is sufficiently oxygenated, as aerobic and anaerobic activity levels are maintained throughout healing [7].
- The increase in glucose concentration may also indicate increased metabolic activity immediately following injury, concurrent with the lactate and pyruvate changes shown.
- Glutamate concentration peaks at 21 days post-injury in congruence with nerve ingrowth and angiogenesis [7].
- PINP decreased immediately following injury, demonstrating a reduction in collagen I production.
- The study timeline was likely not long enough to see the expected increase in collagen I production as the tendon begins the remodeling phase of healing in which collagen III in the fibrotic scar tissue is replaced by more aligned collagen I [2].
- Future studies will investigate changes in the biological environment of a healing Achilles tendon in response to exercise and new modalities to improve healing outcomes.

Lactate, pyruvate, glucose, glutamate, and procollagen type I N propeptide (PINP), concentrations were quantified Figure 2. Coronal ultrasound image of the Achilles (blue), confirming via ELISAs.

probe (red) placement within the body of the tendon. Note the gastrocnemius (asterisk) and calcaneus (star).

Statistical Analysis

• All comparisons were made using the nonparametric Kruskal-Wallis ANOVA followed by Dunn's post hoc tests, which compared values at 7, 14, and 21 days post injury to preinjury values.

Conclusions

This study demonstrates that microdialysis is a viable in vivo, longitudinal measure of Achilles tendon healing in a rat model. This technique will provide valuable metrics to monitor the biological environment in healing Achilles tendons.

References & Acknowledgments

[1] Holm C et al., 2014. Scand J Med Sci Sports, 25:e1-10. [2] Auijla R et al., 2018. Foot Ankle Surg, 24:336-341. [3] Jandali Z et al., 2018. J Reconstr Microsurg, 34:632-641. [4] Riggin CN et al., 2019. Ultrasound Med Biol, 45:1841-1849. [5] Pardes A et al., 2016. J Biomech, 49:376-381. [6] Freedman BR et al., 2017. J Biomech, 56:55-60. [7] Greve K et al., 2012. Scan J Med Sci Sports, 22:e55-63. [8] Alim A et al., 2016. BMJ Open Sport Exerc Med, 2:e000114.

This study was supported by the Penn Center for Musculoskeletal Disorders (P30 AR069619) and the NIH (R01AR064216).